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Abstract. The optical response of free and matrix-embedded gold metal clusters AuN is investigated in the
framework of the time-dependent local-density-approximation (TDLDA). The characteristics of the surface
plasmon resonance are carefully analyzed as a function of the model parameters and the particle radius.
The strong influence of the frequency-dependence of the 5d core-electron dielectric function in the vicinity
of the interband threshold is emphasized. The size evolution of the Mie-frequency in free gold clusters
exhibits a noticeable blue-shift trend as the particle size decreases, much stronger than in silver clusters.
The width and shape of the resonance, essentially ruled by the decay via the interband transitions, are
found closely correlated to the imaginary component of the core-electron dielectric function. In presence of
a surrounding matrix the blue-shift trend is largely rubbed out. Agreement with recent experimental results
on size-selected gold clusters embedded in an alumina matrix may be achieved by taking into account the
porosity effects at the metal/matrix interface. The comparison with the predictions of classical models is
also provided.

PACS. 36.40.-c Atomic and molecular clusters – 71.45.-d Collective effects – 71.45.Gm Exchange,
correlation, dielectric and magnetic functions, plasmons

1 Introduction

In the past decade the optical properties of metal clus-
ters have been extensively studied, both experimentally
and theoretically [1–4]. This growing interest is motivated
by the fruitful information expected to be gained on the
electronic structure and the dynamics of the delocalized
conduction electrons. Most works have focused on the sur-
face plasmon excitation (the dipolar Mie resonance) which
by far dominates the photoabsorption spectra in the near
UV/visible range for metal particles of diameter much
lower than the wavelength of light [5]. Classically, this
resonance corresponds to the collective oscillation of the
conduction electron cloud with respect to the ionic back-
ground. In the simple model of a free-electron gas embed-
ded in a spherical homogeneous positive charge distribu-
tion the surface plasmon frequency is predicted in classical
electrodynamics to occur at ωs = ωp/3

1/2 where ωp is the
volume plasma frequency (Drude-Sommerfeld model).

In the case of alkali species the finite-size effects are
rather strong [6–10]. The surface plasmon frequency moves
towards lower energies with decreasing particle size (“red-
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shift”), and accordingly the polarizability per atom in-
creases [11]. From numerous theoretical investigations de-
voted to alkali species it is now well established that this
behavior has to be attributed to the electron spilling out
beyond the ionic background boundary (spillout effect),
resulting in a lowering of the average electron density [12].
In spite of the underestimation of the red-shift magni-
tude the simple Spherical Jellium Model (SJM) [13,14] ac-
counts for the qualitative trends observed in alkali species.
Depending on the element better agreement with the ex-
perimental findings can be achieved by introducing model
refinements such as shape deformations, effective mass
corrections, pseudopotentials, core polarization effects or
discrete ionic structures.

The interpretation of the optical properties of noble
metal clusters is more complex, because the binding ener-
gies corresponding to the fully occupied d-band are close
to those of the s-valence band [3,15]. As a consequence,
the dynamical response of the valence electrons, respon-
sible for the collective excitations, is strongly influenced
by the polarization of the core electrons through screening
effects. This screening results in a shift of the volume plas-
mon, surface plasmon and Mie resonance to lower energies.
For instance, assuming that the imaginary component
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of the metal dielectric function ε(ω) = εre(ω) + iεim(ω)
does not change much in the region of the resonance,
the Mie frequency of large particles is given by ωs =
ωp/[2εm + εdre(ωs)]

1/2. χd = εd(ω)− 1 is the core-electron
contribution to the total dielectric susceptibility and εm is
the dielectric function of the surrounding matrix (assumed
to be real).

Optical properties of noble metals, especially silver and
gold, have been studied for a long time [3,15]. Most of the
early works involved large particles interacting with a sur-
rounding medium (colloidal solutions or matrix-embedded
clusters). In spite of some contradictory results [16] most
of the experiments are consistent with a blue-shift(matrix-
host dependent) as the cluster size decreases. Various ef-
fects at the interface, inducing either a blue- or a red-shift,
as for instance electron transfer via chemical bonding, are
thought to be responsible for these discrepancies. Actually
very recent investigations on gold clusters in composite
systems emphasize the sensitivity of the observed trend
or shift magnitude to the interface and the surrounding
medium, and – for a given matrix – to the experimen-
tal method. For instance Au-doped alumina gel films pre-
pared by a sol-gel technique [17] and SiO2/AuN compos-
ite films prepared by a sputtering method [18] exhibit a
strong red-shift (the average particle diameter is varied by
the treatment temperature during the film elaboration),
whereas films of AuN clusters embedded in a porous alu-
mina matrix prepared by codeposition on a substrate show
a less pronounced reverse trend [19]. The same behavior
(blue-shift) is reported in reference [20] where AuN gold
particles are electrochemically deposited within the cylin-
drical pores of alumina membranes. However the large
sizes involved in this work (16–52 nm) suggest that part
of the shift might be due to scattering and higher multi-
pole contributions. A tiny blue-shift trend has been also
obtained in dilute solutions of size-selected AuN clusters
passivated by a monolayer of n-alkylthiolates [21].

The blue-shift with decreasing cluster size, illustrated
above through various experiments on gold clusters, is a
common feature of the other noble metals. The same trend
was observed in rare gas/AgN and LiF/CuN composite
thin films [22–24]. The definitive confirmation of the in-
trinsic nature of the observed size-effects was provided by
the photodepletion spectroscopy experiments performed
on small free Ag+

N and Au+
N clusters [25–27]. Neverthe-

less it is worthwhile noting the determining part played
by the charge in the trend governing the size evolution of
the surface plasmon frequency [28]. This stems from the
large change in the electron density at the surface, namely
the compression or spillout increase of the electron cloud
for cations and anions respectively.

In this paper we report calculations on the size evo-
lution of the Mie-resonance and polarizability of free
and matrix-embedded gold clusters in the range N =
8−440. The calculations are carried out in the frame-
work of the time-dependent local-density-approximation
(TDLDA) [29–31], within the two-region dielectric model
(see Sect. 2.1) introduced recently for studying the op-
tical response of small silver clusters [32]. As compared

to silver the main difference concerns the location of the
Mie-resonance which lies above the interband threshold
ωIB. Although the s and d electrons are treated in a
non-equivalent footing the applicability of the model for
gold will be demonstrated throughout this paper, mainly
in Sections 3.2 and 3.5, through the correct predictions
obtained in the large-particle limit (the classical results
are recovered) and the good agreement with experimental
data. In the case of gold clusters a large broadening of
the surface plasmon peak results from the coupling with
the absorption from the d-band. With regard to the over-
all trends and the order of magnitude of the blue-shifts,
the results are in good agreement with the recent experi-
ments performed in our laboratory on thin films consist-
ing of gold clusters embedded in an alumina matrix [19].
The striking impact of the energy-dependence of the core
electron-related dielectric function εd(ω) will be pointed
out. The influence of some model parameters, as the thick-
ness of the surface- region of reduced polarizability or the
matrix porosity, is investigated. Comparison with the pre-
dictions of macroscopical classical Mie-like models is also
given.

The paper is organized as follows. After a review of
previous theoretical investigations on silver clusters, we
present in Section 2 the basic ingredients of our calcula-
tions, with particular emphasis on the determination of
the dielectric function εd(ω) from the experimental opti-
cal constants of bulk gold (Sect. 2.2). The TDLDA results
for free and matrix-embedded clusters are given in Sec-
tion 3, and compared to the classical predictions in Sec-
tion 3.4. The strong influence of the matrix porosity at the
cluster surface is stressed in Section 3.5. The summary of
this work is provided in Section 4. Atomic units are used
throughout this paper.

2 Theory

2.1 Origin of the blue shift

The physical idea underlying the blue-shift trend ob-
served in noble metal clusters is based on the assumption
that – due to the localized character of the core-electron
wavefunctions – the screening effects are less effective over
a surface layer inside the metallic particle. Close to the
surface the valence electrons are then incompletely em-
bedded inside the ionic-core background. In phenomeno-
logical dielectric models, this hypothesis is taken into
account by assuming that the effective polarizable con-
tinuous medium responsible for the screening does not ex-
tend over the whole cluster volume, namely by prescrib-
ing that χd(ω) = εd(ω)− 1 vanishes for r > R − d where
R = rsN

1/3 is the cluster radius and d a thickness param-
eter on the order of a fraction of the nearest-neighbour
atomic distance (rs is the Wigner-Seitz radius of the bulk
metal). This model will be referred to as the two-region
dielectric model. This assumption was early introduced
by Liebsch to explain the wave-vector dispersion of the
Ag-surface plasmon observed in electron energy loss mea-
surements [33]. Assuming that the quantum-mechanical
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Fig. 1. Spectral dependence of the real (full line curves) and
imaginary (dashed line curves) components of the complex di-
electric constants of gold metal. (a) Experimental dielectric
function εexp(E) (the sign of the real part is reversed for con-
venience) [37]. (b) Bound-electron contribution εd(E).

surface effects are identical for large spherical particles,
it was shown that the blue-shift of the Mie-resonance is
a consequence of the reduced screening interaction in the
surface region. This ingredient was also used within a clas-
sical Mie-like model suitable for coated Ag-metal spheres
embedded in a rare gas matrix [23]. Subsequently the
model was investigated by Kresin within an approximate
theoretical formalism [34]. Recently, TDLDA calculations
have been performed on free AgN and Ag+

N clusters in the
size rangeN ≤ 138, within the two-region dielectric model
[32].

A more sophisticated approach has been published
during this work, where both the valence and core elec-
trons are microscopically treated [35]. In this formalism,
closely related to the one in reference [36] devoted to
simple metals in the bulk phase, the dipole moments
at each ionic site j, responsible for the screening, are
self-consistently determined. The main approximations
concern: (i) the ion polarizability αj(ω) which is assumed
to depend only on the ground-state valence electron den-
sity and is computed in an approximate embedded-atom
method (in practice, since the valence electron density is
rather flat and decreases abruptly at the surface, αj is
taken, either as the free ion polarizability (surface atoms),
or as the fully embedded-core polarizability corresponding
to the bulk density (inner atoms)), and, (ii) the valence
states, and therefore the free response, which are calcu-
lated within the simple structureless SJM. Let us point
out that the model improvement concerns only the treat-

Fig. 2. Mie-absorption spectra of free gold particles (Eq. (4)).
Two metal dielectric functions ε(E) are involved. Grey line
curve: experimental dielectric function ε(E) = εexp(E) [37].
Thick line curve: ε(E) = εs(E) + [εd(E)− 1].

ment of the influence of the polarizable inner medium
on the valence electron response (discrete ionic structure
and induced dipolar moments at the ionic sites, and mi-
croscopic description of the valence electron-ionic core
Coulomb interaction). As in the simple two-region dielec-
tric model [32], the real interband transitions, which dom-
inate the experimental photoabsorption spectra above the
Mie resonance, are disregarded in the spectra displayed in
Figures 1 and 2 of reference [35] (only the imaginary
part of the dynamical valence polarizability – Eq. (18)
in Ref. [35] – is calculated). Obviously this refined model,
which provides physical support to the phenomenological
two-region dielectric model, requires to select a specific
geometry and leads to more lengthy computations. Ac-
tually calculations involving different cluster geometries
yield almost identical results, suggesting that the screen-
ing effects do not depend on the details of the ionic frame.
Since the two-region dielectric model yields photoabsorp-
tion spectra of similar quality – in particular the surface
plasmon resonance is located in the same energy range
(compare Figs. 1 and 2 in Refs. [32,35], respectively) –,
it is expected that applying this more sophisticated mi-
croscopical approach would not change much the results
reported in this paper.

2.2 Determination of the dielectric function εd(ω)

In the model the spherical ionic-core background is phe-
nomenologically described by both, (i) a homogeneous
positive charge distribution of radius R and density ρ0 =
3/4πr3

s (jellium approximation), and, (ii) a continuous ho-
mogeneous polarizable medium of radius R− d and com-
plex dielectric function εd(ω). εd(ω) has been extracted
from the experimental complex refractive index of bulk
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gold [37]. The method is closely related to the one re-
ported in reference [38]. The bulk gold dielectric function
εexp(ω) (see Fig. 1a) is decomposed as

εexp(ω) = εs(ω) + [εd(ω)− 1] (1)

where the free electron contribution εs(ω) is assumed to
be quite well described by the Drude-Sommerfeld model
formula

εs(ω) = 1−
ω2
p

ω(ω + iΓ )

=

[
1−

ω2
p

ω2 + Γ 2

]
+ i

[
ω2
pΓ

ω(ω2 + Γ 2)

]
(2)

where ωp = (ρ0q
2/ε0meff )1/2 is the plasma frequency.

The steep low-frequency behaviours of both components
εexpre (ω) and εexpim (ω) in Figure 1a are consistent with those
deduced from the free-electron gas model equation (2)
(Γ � ωp). The sudden rise of εexpim (ω) beyond ω ≈ 1.9 eV,
which reflects the onset of the interband transition d→ s,
is clear, allowing an unambiguous partition of εexp(ω) into
free- and bound-electron contributions. Assuming an ef-
fective mass meff of the conduction electrons equal to
unity and Γ = 1/τc, where τc is the conductivity relax-
ation time at 273 K [39], the imaginary component εdim(ω)
is obtained from equations (1, 2) with the additional pre-
scription εdim(ω ≤ 1.8 eV) = 0. Because εsim(ω) is, as com-
pared to εdim(ω), small beyond the interband threshold,
the errors resulting from the simple parameterization in
equation (2) and the numerical assumptions on meff and
Γ are not important. This does not hold true in respect
of εdre(ω) which has moreover to be correctly described in
the low-frequency region, where the polarizable medium
acts through pure screening effects. Considering that the
real and imaginary components of both the total dielec-
tric function ε(ω) and εs(ω) satisfy the Kramers-Kronig
relations (due to experimental errors this is not strictly
guaranteed for εexp(ω)), it follows that εd(ω) will do too.
The real component εdre(ω) is therefore calculated through
the formula

εdre(ω) = 1 +
2

π
P

∫ ∞
ωIB

Ωεdim(Ω)

Ω2 − ω2
dΩ (3)

assuming a linear interpolation between consecutive ex-
perimental data points. In equation (3) the symbol P
stands for the principal value of the integral, and the in-
tegration is performed up to 500 eV.

Both components of the dielectric function εd(ω) are
displayed in Figure 1b. In order to validate the previous
derivation with regard to our purpose (study of the surface
plasmon excitation) a simple numerical test has been car-
ried out. The photoabsorption spectrum of a gold metal
sphere has been calculated by the classical Mie theory in
the dipolar approximation

σ(ω) = 9V ε3/2
m

ωεim

(εre + 2εm)2 + ε2
im

(4)

using successively ε(ω) = εexp(ω) and ε(ω) = εs(ω) +
[εd(ω) − 1]. In equation (4) V is the particle volume. In
Figure 2 are displayed the results for free clusters (εm =
1). Except for a very tiny shift the agreement is quite
good in the spectral region of interest, proving that the
Kramers-Kronig relations are quite well satisfied by the
experimental dielectric function. In particular the peak
maximum location is underestimated by roughly 0.03 eV.
This value can be considered as a systematic error in our
model calculations.

2.3 Time-dependent local-density-approximation
(TDLDA)

Our theoretical framework is the same as the one implic-
itly involved in reference [32] for free AgN clusters. Within
the linear-response theory the induced electronic density
is expressed as

δρind(r, ω) =

∫
χ(r, r′, ω)Vext(r

′, ω)dr′ (5)

where Vext(r, ω)e−iωt is the oscillatory external potential
(Vext(r, ω) = Z) and χ(r, r′, ω) is the frequency-dependent
density-density correlation function. Within the TDLDA
[29–31] it is assumed that the electronic response can be
evaluated as in the independent-particle case provided
that the induced variation of the ground-state (label gs)
mean-field potential Veff [r, ρgs] is added to the external
one. The induced electron density is thus solution of the
self-consistent equation

δρind(r, ω) =

∫
χ0(r, r′, ω)

[
Vext(r

′, ω)

+

∫
δVeff [r′, ρ]

δρ

∣∣∣
gs
δρind(r

′′, ω)dr′′
]
dr′ (6)

where χ0(r, r′, ω) is the independent-electron density-
density correlation function and can be expressed in terms
of single-particle Green’s functions G(r, r′, E)

χ0(r, r′, ω) =
∑
i

[ϕ∗i (r)ϕi(r
′)G(r, r′, εi + ω)

+ ϕi(r)ϕ∗i (r′)G∗(r, r′, εi − ω)] (7)

G(r, r′, E) = 〈r|[H −E − iδ]−1|r′〉, where H is the single-
particle Kohn-Sham (KS) Hamiltonian. In equation (7)
the label i runs over the occupied ground-state KS-wave-
functions ϕi (energies εi). In practical calculations a fi-
nite δ value is used. In a first approximation this amounts
to attributing an intrinsic width 2δ to each bound-
bound particle-hole excitation line (Lorentzian-shaped
peaks). In most calculations δ was set to a value small
enough (30 meV) to resolve the fragmentation pattern
resulting from the coupling of the collective mode with
the single particle excitations (Landau damping or
fragmentation) [40].
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The KS mean-field potential in the density functional
theory is

Veff (r, ρ) =

∫
Vc(r, r

′)[ρ(r′)− ρ+(r′)]dr′ + vxc[ρ(r)]

(8)

where ρ+(r) = ρ0Θ(R− r) is the positive charge distribu-
tion (Θ is the Heaviside or step function). −Vc(r, r′) is the
classical Coulomb electrostatic potential in the presence of
the dielectric media, and vxc[ρ(r)] is the local exchange-
correlation potential for which we have invoked the stan-
dard Gunnarsson-Lundqvist functional parameterization
[41]. From the previous equations it follows that χ(r, r′, ω)
is determined by the integral equation

χ(r, r′, ω) = χ0(r, r′, ω)

+

∫∫
χ0(r, r1, ω)K(r1, r2)χ(r2, r

′)dr1dr2

(9)

where the driving kernel K(r1, r2), the so-called residual
interaction, arises from the Coulomb electron-electron in-
teraction and exchange-correlation contributions

K(r1, r2) = Vc(r1, r2) +
dvxc

dρ

∣∣∣
gs
δ(r1 − r2). (10)

The general expression of Vc(r, r
′), for both two and three

dielectric media (one and two nested spherical interfaces
respectively) are given in Appendices A and B.

Note that the dielectric functions, namely the screen-
ing effects from the inner polarizable medium and the em-
bedding matrix, are involved in two stages of the calcu-
lations: (i) when solving the self-consistent KS-equations
for the ground-state problem (the single-particle KS-wave-
functions ϕi and energies εi, and consequently the free
response χ0, are thus concerned), and, (ii) in the direct
screening of the residual interaction in equation (10). As
a matter of fact the direct screening is by far the main
factor governing the optical property changes induced by
the dielectric media [42,43]. As in all previous calculations
we have assumed that the exchange-correlation functional
is not modified in the presence of the dielectric media,
and moreover takes the same form over the whole energy
excitation range, i.e. for the ground and excited states
[42–44]. Let us stress that an attempt for modifying
vxc[ρ(r)], in a way similar to that used for the direct
Coulomb interaction, is not straightforward, because the
functional parameterization is local. In fact locality pre-
vents any simple procedure from emerging. So far, the
validation of this hypothesis as well as its possible influ-
ence were never analyzed from a theoretical point of view.
Nevertheless, since rather good results are obtained in as-
suming this approximation – at least in the Mie resonance
spectral range – it is expected that the related errors are
minor.

The equations considerably simplify for cluster sizes
corresponding to closed electronic shells in the ground
state, due to the spherical symmetry of the problem. We

refer the reader to references [29,30] for more detailed the-
oretical and technical information. We provide only the
fundamental observables calculated in the present work.
Once χ(r, r′, ω) is calculated by standard matrix tech-
niques the complex induced charge density is obtained
through equation (5), and the frequency-dependent com-
plex dynamical polarizability is given by

α(ω) =

∫
δρind(r, ω)Vext(r, ω)dr. (11)

The photoabsorption cross-section is given by the imagi-
nary component of the polarizability

σ(ω) = 4πωIm[α(ω)]. (12)

For large clusters the calculation of TDLDA-absorption
spectra requires rather large computational times, due es-
sentially to the large size of the matrixes to be handled
for solving the integral equation (Eq. (9))for each ω value.
Sum rule formulas, which relate some kth-energy-weighted
moments of the strength distribution to simple ground-
state properties [12,45,46], have provided efficient numer-
ical accuracy tests.

3 Results

We present now the results of the two-region dielectric
model which is thought to describe quite well the size
effects in the surface plasmon band of real noble metal
clusters. Strictly speaking the thickness d of the region
of reduced polarizability is a phenomenological parame-
ter. In view of the approximation consisting in replacing
the discrete ionic structure by continuous step-walled jel-
lium and polarizable media, a rigorous rule for setting
its value cannot be defined. Nevertheless it is advisable
to justify our choice. By comparing the Wigner-Seitz ra-
dius rs of bulk silver with the extent of the electron d-
wavefunction Kresin has estimated the thickness parame-
ter d to be about 2 a.u. in AgN clusters [34]. Obviously the
estimate depends on the threshold for which the d-electron
density is regarded as negligible. In TDLDA calculations
carried out on the Ag+

59 cluster, assuming d = 2 a.u. seems
to reproduce quite nicely the experimental photoabsorp-
tion spectrum [32]. Moreover this value is of the same
order of magnitude as the one used by Liebsch to fit ex-
perimental data on Ag surface [33]. We have performed
atomic calculations involving nonlocal norm-conserving
pseudopotentials [47]. The results show that the tails of
the nd-wavefunctions are rather similar for Ag and Au
atoms (4d and 5d respectively). Since the rs-values of these
two elements are very close (rs = 3.02 a.u. and 3.01 a.u.
respectively) [48] the value d = 2 a.u. seems to be a rea-
sonable prescription for investigating the optical proper-
ties of gold clusters. In order to emphasize the model-
parameter dependence, we also provide results obtained
with d = 0 and 1 a.u. Due to the above-mentioned
approximations, involving refinements such as a size-
dependent thickness appears to be irrelevant, though the
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optical properties of very small Ag+
N and Au+

N -clusters
suggest that the reduced-screening region has to be ex-
tended probably over the whole cluster volume in this size
range [25–27]. This peculiarity stems from the fact that
most of the atoms lie at the surface, and moreover that
the electron d-related bulk dielectric function is probably
not a relevant theoretical concept for very small clusters.

3.1 Qualitative analysis of the size effects

Two main physical ingredients, leading to opposite trends,
are responsible for the size evolution of the optical proper-
ties in noble metal clusters, namely: (i) the surface region
of reduced polarizability which yields a blue shift relative
to the bulk limit (see Sect. 2.1), and, (ii) the quantum-
mechanical spillout effect which red-shifts the plasmon
frequency. It is worthwhile recalling both competing ef-
fects within simple physical terms for making the analysis
of the raw TDLDA absorption spectra (for both free and
matrix-embedded clusters) easier. Let us stress that dis-
entangling the respective numerical contributions to the
net resonance-shift stemming from both effects (i) and
(ii) cannot be achieved in a rigorous way in microscop-
ical TDLDA calculations, and necessarily would rest on
some approximate analytical analysis of the problem. In
fact the Fermi wavelength λF ≈ 3.3rs is large as com-
pared to the skin thickness d. Hence the effects of both
interfaces located at r = R − d and R and of the skin
region are closely interdependent. The intricate interplay
between both ingredients (i) and (ii) is clearly exemplified
by the analytical equation derived by Kresin [34]. This
somewhat arbitrary separation is however convenient for
providing qualitative intuitive guidelines.

We first discuss the ingredient (i) which can be easily
included in a classical approach. Although the influence
of the imaginary component εdim in gold clusters cannot
be neglected, only the real part will be considered here
in order to simplify the presentation. Depending on the
nature of the ionic background it is useful to define the
“screened” surface plasmon frequency

ωscr =
ωp

[2εm + εdre(ωscr)]
1/2

(13)

and the SJM-related “unscreened” one ωuns = ωp/(2εm+

1)1/2. These frequencies are the bulk limits corresponding
to the two extreme cases d/R ≈ 0 and d = R respectively.
For a finite particle size such as R > d > 0 it is clear that
the surface plasmon frequency will be enclosed by these
two limiting values (except if large specific finite-size ef-
fects occur) and ruled by the ratio Nscr/N where Nscr is
the number of electrons lying in the inner region r < R−d.
The classical Mie-like absorption formula appropriate to
a coated sphere, which depends only on the volumic ratio
f = [(R− d)/R]3 (see Sect. 3.4), supports this statement.
In a quantum-mechanical approach the underlying rele-
vant parameter and size-evolution law are not expected to
be as simple because the electron density is not step-walled
and presents size-dependent surface oscillations. Neverthe-
less, since the relative influence of the skin region increases

as the cluster size decreases, the mean trend over a large
size range is expected to be qualitatively similar to the
classical behavior. Namely a monotonic evolution of the
plasmon frequency from ωuns to ωscr as R increases from
R = d to some very large value is predicted to be induced
by this first effect.

On the other hand the spillout effect is an intrinsic
quantum mechanical effect. Within the SJM the corre-
sponding induced red-shift (relative to ωuns) can be re-
lated, thanks to sum-rule formula [12], to the amount of
electrons outside the jellium sphere in the ground state.
In the two-region dielectric model the magnitude of the
red-shift is expected to depend also on the inner electron
density profile close to the surface in addition to the elec-
tron density beyond the radius R, as for instance in SJM-
like models involving local ion-pseudopotentials [49]. As
a general rule, the softer the surface electron density, the
larger the red-shift. In spite of the absence of quantitative
theoretical basis, and noticing that the volume plasma fre-
quency ωp scales as the square root of the bulk density,
it is reasonable to consider “the degree of softness” of the
surface electron density tail, or in other words the average
surface density, as a suitable criterion for estimating the
importance of the induced red-shift. We have carried out
calculations on some cluster sizes, assuming a dielectric
function εd in the range 5–10, and have compared the re-
sults with those of the standard SJM. The surface profiles
of the mean-field potential and electron-density are found
quite identical when εm = 1 (except for a very tiny soft-
ness increase when d = 0), suggesting that the red-shift of
the plasmon frequency (relative to the respective bulk lim-
its of both models) will be of similar order of magnitude
for free clusters. This result contrasts with the effect aris-
ing from a surrounding medium of high refractive index
which yields a large increase of the softness of the surface
electron density [42,44].

3.2 Free clusters

In Figure 3 are displayed photoabsorption spectra exem-
plifying our TDLDA results over the entire studied size
range. The size evolution of the photoabsorption cross-
section is clearly evidenced. We discuss successively the
various features of the spectra.

3.2.1 Mie-resonance location

Concerning the location of the surface plasmon frequency
the interpretation is straightforward in view of the previ-
ous qualitative analysis. One observes a blue-shift trend
as the cluster size (d-value) decreases (increases). This
demonstrates that the influence of the surface region of
reduced polarizability overcomes the spillout effects in
gold clusters. As indicated above (end of Sect. 3.1) sim-
ilar mean-field and electron density surface profiles are
obtained within the two-region dielectric model and the
SJM. The lowering of the plasmon frequency due to
the inner dielectric medium, as compared to the SJM
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Fig. 3. Photoabsorption spectra of free gold clusters within
the two-region dielectric model, for different thicknesses of the
skin region of reduced polarizability. Thick line curves: d = 2
a.u.; dashed line curves: d = 1 a.u.; thin line curves: d = 0.
The short vertical line in Figure 3d indicates the dipolar Mie-
resonance energy in the large-particle limit.

(ωs = ωp/3
1/2 ≈ 5.21 eV) is thus entirely governed by the

dynamical screening, namely by the residual interaction
K(r1, r2) (Eq. (10)).

A more detailed analysis is however required to ex-
plain the surprising size-independence of the plasmon fre-
quency for d = 0 a.u. Interpretation of this feature will
point out the striking influence of the energy-dependence
of εd(ω) in the region of the collective excitation. Classi-
cally the photoabsorption cross-section shows a resonance
behaviour when |ε(ω) + 2εm| is minimum. Owing to the
ω-dependence of εim this condition is in fact only approx-
imate (see Eq. (4)). Assuming a minimum value equal to
zero and solving the corresponding equation in the com-
plex plane allows to infer the εd(ω)-dependence of the
main characteristics of the plasmon resonance. Neglect-
ing the damping constant (Γ � ωs) in equation (2) the
complex plasmon frequency ω∗, whose the real and imag-
inary components are related to the resonance location

and width respectively, is given by the following implicit
equation

ω∗ =
ωpe
−i
φ(ω)

2

{[2εm + εdre(ω
∗
re)]

2 + [εdim(ω∗re)]
2}1/4

(14)

tanφ =
εdim(ω∗re)

2εm + εdre(ω
∗
re)
· (15)

Since 2εm+εdre(ω) > εdim(ω) below 4 eV (the ratio is equal
to 5 near 2.5 eV), the angle φ/2 is small and approximate
values of the real and imaginary components are obtained

ω∗re =
ωp

{[2εm + εdre(ω
∗
re)]

2 + [εdim(ω∗re)]
2}1/4

≈
ωp

[2εm + εdre(ω
∗
re)]

1/2
(16)

ω∗im = −
εdim(ω∗re)

2[2εm + εdre(ω
∗
re)]

ω∗re. (17)

In spite of the somewhat artificial derivation of equa-
tion (14) the qualitative and quantitative information
brought by equations (16–17) are quite correct. For in-
stance solving equation (16) leads to the result ω∗re =
2.5 eV which is almost exactly the location of the peak
maximum in the Mie-absorption spectrum (see Fig. 2).
From the examination of Figure 1 and equation (16) one
deduces at once that the Mie-resonance shift trend (red-
or blue-shift) and its magnitude are strongly dependent
on the location of the large-particle-limit resonance fre-
quency (ωs(∞)) relative to the maximum of the steep
peak in εdre(ω)(ωmax). If ωs(∞) < ωmax, the red (blue)-
shift induced by the spillout effect (skin region of re-
duced polarizability) is counterbalanced by the decrease
(increase) of the denominator in equation (16). The net re-
sult depends on the slope of the εdre(ω)-curve. Conversely,
if ωs(∞) > ωmax the red- and blue-shift trends will be
magnified. In the present case ωs(∞) is equal to 2.46 eV,
value very close to ωmax. Consequently one expects that
any “attempt” for a red-shit by finite-size effects will be
strongly quenched. This “locking” phenomenon explains
both the noticeable blue-shift obtained with d ≥ 1 a.u.
and the quasi size-independence of the Mie-frequency for
d = 0, specific case where only the spillout effect is present.
Actually this phenomenon is responsible for the rather flat
size-evolution of the Mie-frequency in Ag+

N clusters within
the two-region dielectric model. The ωmax-value, which
is closely related to the interband-threshold through the
Kramers-Kronig relations, is located above ωs(∞) in the
case of silver metal. We have extended the calculations of
reference [32] over the size-range [138–440] and found a
similar flat evolution. Actually the most part of the tiny
blue-shift results from the charge effect (decrease of the
electron spillout for cations).

Figure 4 summarizes the results we obtained over the
entire size range. For both the normalized static polariz-
ability α(N,ω = 0)/R3 (Fig. 4a) and the plasmon peak
maximum ωs(N) (Fig. 4b) a roughly-linear mean evolu-
tion on the 1/R scale is found. One observes, as expected
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Fig. 4. The size evolution of the normalized static polarizabil-
ity (a) and of the maximum of the Mie-resonance peak (b) for
free gold clusters within the two-region dielectric model, for
different d-values. EMie is the surface plasmon energy in the
large-particle limit.

physically, a systematic opposite size-trends in the corre-
sponding curves. However, in contrast with standard SJM
results [1,2], one can notice that the “anti-correlation” is
less obvious. For instance for d = 0, to the flat evolu-
tion of ωs(N) corresponds a noticeable blue-shift trend
in the α(N,ω = 0)/R3 curve, and, for d = 2 a.u., the
normalized polarizability evolves much less steeply than
the Mie resonance, contrary to SJM results. This pecu-
liarity stems from the large width and the strong asym-
metrical shape of the Mie-resonance band (see Fig. 3),
resulting in a large breakdown of the so-called surface
plasmon-pole formula obtained in assuming that the os-
cillator strength distribution is exhausted by the col-
lective mode centered at ωs (namely α/R3 = 1/r3

sω
2
s ,

deduced from both sum-rule formula
∫
σ(ω)dω = 2π2N

and
∫
σ(ω)ω−2dω = 2π2α(ω = 0)).

The correct prediction in the large-particle limit, which
has to coincide with the classical result, gives support to
the suitability of the two-region dielectric model in the
case of gold, as for silver. The extrapolation to large sizes
of the curve corresponding to d = 0 in Figure 4b clearly
converges toward the classical Mie prediction 2.46 eV (see
Fig. 2). One can notice however that the extrapolation
of the curves corresponding to d = 1 and 2 a.u. seem to
slightly underestimate the classical value. This feature is
a consequence of the ω-dependence of εd(ω), which makes
the size evolution on a 1/R scale not perfectly linear, con-
trary to usual SJM results.

3.2.2 Width and shape of the resonance

As it was observed in the case of matrix-embedded potas-
sium clusters [42,43] the collectivity of the Mie excitation
increases considerably and the fragmentation phenomenon
due to the Landau damping is less developed in the pres-
ence of an inner dielectric medium. For d = 2 a.u. the
Landau fragmentation is reflected through some peaks in
the left side of the Mie-band and tiny modulations on the
high-energy tail of the spectrum. These features, which
are obscured by the coupling with the core-electron ab-
sorption band (ωs > ωIB), are supported by calculations
on AgN clusters. In the case of silver the absorption spec-
tra display either a single narrow peak (a small δ-value is
involved in the Green’s function; see Sect. 2) or a strongly
congested multi-peak pattern around the Mie-frequency
(ωs < ωIB for silver). The large broadening of the Mie-
band in Figure 3 results mainly from the coupling of the
collective mode with: (i) the 1p − 1h continuum states
in the high-energy region (the first continuum threshold
lies in the energy-range 3.5–4 eV), and, (ii) the d-electron
absorption band (ωIB = 1.8 eV). SJM calculations show
that the broadening of the Mie-resonance by the interac-
tion with the 1p − 1h continua is reduced as the size in-
creases. This feature holds probably in the presence of the
inner dielectric medium. This strongly indicates that the
saturation phenomenon in the band-width and shape ob-
served for large sizes has to be attributed to the damping
mechanism (ii), in others words the plasmon decay via the
interband transitions. An estimate from Figure 3d (d = 0
(thin curve)) yields the approximate value ΓIB ≈ 0.28 eV
(estimate at half-maximum). Moreover additional calcu-
lations have proved that the overall width does not de-
pend noticeably on the model-parameter δ involved in
the Green’s functions (Sect. 2), except for very large val-
ues. In particular both the maximum and the degree of
asymmetry of the Mie band are found unchanged as δ
increases. These features, which cannot be interpreted in
terms of a mere spectrum smoothing, suggest that the
width and shape of the Mie resonance are mainly ruled
by the ω-dependent background-dielectric function εd(ω).
This statement is assessed by estimating |ω∗im| (Eq. (17)),
interpreted as the damping constant ΓIB characterizing
the decay via the interband transitions. Using the value
ω∗re = 2.5 eV one obtains |ω∗im| = 0.26 eV. The numeri-
cal consistency between the characteristics of the TDLDA
plasmon band (location and width) in Figure 3d with the
approximate classical results equations (16, 17) provides
an additional support to the present model for studying
the size effects in the Mie band of gold nanoparticles. In
the energy range 1.8–3.5 eV, especially around 2.5 eV, the
relative change in εdim(ω) is larger than in εdre(ω). From
equation (17) we infer that the size-evolution of the width
of the Mie-resonance is closely correlated to the magnitude
of εdim(ωs(N)). The analysis of the spectra in Figure 3 and
of εd(ω) in Figure 1b confirms this assumption. With re-
gard to the resonance profile the observed asymmetry is
correlated with the ω-dependence of εdim(ω) on both sides
of ωs(N). Namely, the spreading of the collective mode
on the energy scale, induced by the coupling with the
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Fig. 5. Photoabsorption spectra of alumina matrix-embedded
gold clusters within the two-region dielectric model, for dif-
ferent thicknesses of the skin region of reduced polarizability.
Thick line curves: d = 2 a.u.; dashed line curves: d = 1 a.u.;
thin line curves: d = 0. The short vertical line in Figure 5d in-
dicates the dipolar Mie-resonance energy in the large-particle
limit.

interband transitions, reflects the oscillator strength dis-
tribution of the core-electrons excitations.

3.3 Embedded clusters

For comparison purpose with experimental findings we
present the results obtained for alumina-embedded AuN
clusters. The theoretical framework is similar to the one
used for free clusters, except for the change of the two-
body Coulomb interaction Vc(r, r

′) (Appendix B). As in
previous works on potassium and silver clusters [42,43]
we assume that the effects of the (quasi)-transparent ma-
trix can be mimicked by involving a continuous isotropic
medium extending down to the cluster radius R, and char-
acterized by the experimental complex dielectric function
εm(ω) of bulk alumina (εm is real and almost constant in
the plasmon region and close to the value 3.1) [37].

Concerning the ground state mean-field KS-potential,
the matrix effects result in both: (i) a slight up-shift of
the potential bottom, and, (ii) a large softness increase

of the surface profile. This last feature, which stems from
the large matrix-induced charge screening, leads to a much
larger electron spillout. The red-shift trend of the plasmon
frequency will be then more pronounced compared to free
clusters. Since the detailed analysis in Section 3.2 applies
to embedded clusters also, we only comment the main
modifications induced by the surrounding matrix and ex-
emplified in Figure 5. First one observes a lowering of the
large-particle-limit plasmon frequency. The change is tiny
because εm � εd in the energy range of interest. Assum-
ing the value εm = 3.1, equation (16) leads to the result
ω∗re = 2.25 eV in perfect agreement with the plasmon
frequency obtained in microscopical TDLDA calculations.
This value is close to ωIB and consequently the collective
mode will be less broadened by the coupling with the in-
terband transitions. With ω∗re = 2.25 eV, equation (17)
yields the damping constant ΓIB = |ω∗im| = 0.065 eV,
value very close to the peak-width in Figure 5d (thin line
curve). This agreement emphasizes again the applicability
of the present model for gold. Obviously comparison with
experimental spectra requires to take into account other
sources of resonance broadening. Let us quote the cou-
pling with the thermal fluctuations of the surface [50], the
shape-induced resonance splitting [8], the electron scat-
tering at the lattice defects and against the rough surface
[3], or the chemical interface damping [51]. As previously
stated the collectivity of the Mie excitation is enhanced
and the Landau damping is considerably reduced in the
presence of a surrounding medium. Except for the smallest
size studied (N = 8) most part of the oscillator strength
(
∫
σ(ω)dω = 2π2N) is exhausted by a single peak, namely

the collective Mie resonance.

With regard to the size evolution of the plasmon fre-
quency Figure 6 shows that the surrounding matrix leads
to strong effects and modifies quantitatively, and quali-
tatively, the free-cluster size-behaviours (see Fig. 4). The
changes are easily interpreted as resulting from the large
spillout increase (magnification of the red-shift trend as
the cluster size decreases) taking into account the “lock-
ing” phenomenon described in Section 3.2.1. In particular,
for d = 2 a.u. the rather large blue-shift trend in Figure 4
is almost rubbed out, as in the TDLDA results on free
AgN clusters [32]. For very small clusters better agree-
ment with experiment could be achieved by introducing
a larger thickness parameter d [25–27]. With regard to
medium and large clusters we will see in Section 3.5 that
the matrix porosity effects are probably responsible for
the (slight) underestimation of the blue-shifts.

The matrix influence is indeed more spectacularly re-
flected in the large magnitude of the polarizability (en-
largement by a factor on the order of 3–4, see Fig. 6a).
These very large values, in view of the rather minor
changes of the Mie-frequencies, seem apparently incon-
sistent with the plasmon-pole formula (see the end of
Sect. 3.2.1) which is expected to be satisfied more ac-
curately owing to the plasmon-peak narrowing. Since
the f -sum rule is found to be quite well exhausted by
the plasmon resonance, the sum-rule

∫
σ(ω)ω−2dω =

2π2α(ω = 0) is suspected to be strongly violated.
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(a)

(b)

Fig. 6. The size evolution of the normalized static polarizabil-
ity (a) and of the maximum of the Mie-resonance peak (b) for
alumina matrix-embedded gold clusters within the two-region
dielectric model, for different d-values. EMie is the surface plas-
mon energy in the large-particle limit.

Actually this intringuing feature is a consequence of the
matrix absorption in the far infrared spectral region. The
insulating alumina matrix presents very sharp absorption
peaks around 0.06 eV. This absorption results in small
narrow peaks in the optical response of gold clusters con-
tributing largely to the above sum-rule because of the high
value of ω−2 (see the inset in Fig. 5b), and therefore inval-
idates the plasmon-pole formula. From a computational
point of view this sum-rule is found satisfied accurately
only if the absorption cross-section σ(ω) is carefully esti-
mated in this spectral range (typically the standard energy
step ∆ω = 4 × 10−4 a.u., used in our TDLDA calcula-
tions, has to be reduced by a factor 10). Let us note that
these infrared absorption bands are directly responsible
for the large decrease of the real part of the dielectric-
function εm(ω) as ω increases from zero to the visible re-
gion [37]. In the present work the value corresponding to
the lowest tabulated energy value was taken for εm(0),
namely εm(0) = 9.505. This value is enclosed by the two
anisotropic constants ε11(= ε22) and ε33 of the uniaxial
Al2O3 crystal (in the visible range the anisotropy is less
than two percents).

3.4 Comparison with classical results

In this section the microscopic TDLDA results are com-
pared with the classical predictions. The skin region of
reduced polarizability is taken into account in using the

Fig. 7. Comparison of the theoretical surface plasmon fre-
quencies (maximum of the resonance peak) obtained within
the classical Mie-theory equation (18) (empty triangles) and
the TDLDA formalism (black triangles), in the framework of
the two-region dielectric model (d = 2 a.u.). (a) Free gold clus-
ters. (b) Alumina matrix-embedded gold clusters.

Mie-like formula appropriate to a coated sphere [3]

σ(ω) = 3V ωε1/2
m

× Im

{
(εs−εm)(ε+2εs)+f(ε−εs)(εm+2εs)

(εs+2εm)(ε+2εs)−f(ε−εs)(2εm−2εs)

}
(18)

where the dielectric function ε of the cluster core is equal
to εs(ω) + [εd(ω) − 1] and f = [(R − d)/R]3 is the ratio
of the core to the whole cluster volume. The parameters
used are Γ = 30 meV (Eq. (2)) and d = 2 a.u.

The results are displayed in Figure 7, for free (a) and
embedded (b) clusters. For small free clusters the peak
plasmon is completely rubbed out by the interband tran-
sitions, and hence classical predictions are not given in
this size range (see Sect. 3.5). As it was stated in Sec-
tion 3.1 the blue-shift trend induced by the skin region
of reduced polarizability is predicted within a simple clas-
sical approach. However its magnitude differs noticeably
in classical and quantum models. Moreover the discrepan-
cies are not systematic and depend on the physical sys-
tem which is investigated. For alumina matrix-embedded
clusters the TDLDA results are red-shifted relative to the
classical ones owing to the large electron spillout effect
which is disregarded in a Mie-like classical approach. In
the case of free clusters the quantum and classical plasmon
frequencies are almost identical in the large-size range.
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In the medium- and small-size ranges the TDLDA val-
ues are blue-shifted relative to the classical predictions, in
spite of the electron spillout. This seemingly contradictory
feature stems from the fact that in a quantum model more
electrons are beyond the interface of radius R− d and are
“associated” with the unscreened plasmon frequency ωuns.
In other words the surface electron-density tail, responsi-
ble for the spillout effect, leads, relative to the classical
predictions, to a simultaneous blue-shift trend. The com-
petition between these two opposite trends is ruled by the
refractive index of the surrounding matrix.

3.5 Influence of the matrix porosity

How does the cluster-matrix interface influence the opti-
cal response of gold metal particles? In view of the various
experiments quoted in the introduction, answering confi-
dently this question is undoubtedly a difficult challenge.
Informations about the cluster structure, the chemical
metal-matrix bonding and the possible charge transfer at
the interface are expected to be required [3]. Nevertheless
the TDLDA calculations reported in the previous sections
have shown that quite reasonable quantitative results can
be obtained in the framework of the two-region dielectric
model in spherical symmetry. In this paragraph we will
show that rather simple dielectric effects may explain the
experimental results with a high degree of agreement.

In Figure 8 are displayed experimental findings on
composite films consisting of low-concentration (≤ 7%)
gold clusters embedded in an amorphous alumina matrix
(black squares) [19]. The data correspond to five different
particle-size distributions. The mean cluster radius char-
acterizing the samples was calculated through the formula

Rmean =
[∫
R3f(R)dR

]1/3
where f(R) is the normal-

ized particle-radius distribution deduced from transmis-
sion electron micrograph analysis. Note that the above
definition is more relevant than the formula

∫
Rf(R)dR

since the absorption cross-section is proportional to the
number of atoms in the cluster. The experimental data lie
between the extrapolated theoretical curves corresponding
to free and fully-embedded clusters (empty triangles), sug-
gesting that the experimental results could be explained
by taking into account the matrix porosity. Prior to an-
alyzing quantitatively the influence of the porosity let
us emphasize that other effects may underlie the dis-
crepancies between the experimental and theoretical re-
sults (fully-embedded clusters), as for instance the lattice
shrinkage in the small size range [52] (increase of the vol-
ume plasma frequency ωp) or the increase of the thickness
parameter d.

Various complementary techniques have pointed out
the large porosity of the composite films prepared by co-
deposition of both materials on a substrate using the low-
energy-cluster-beam-deposition technique. All the results
are consistent with a mean porosity of about 45% with
respect to crystalline Al2O3.

Two kinds of model calculations have been carried out
to mimic and quantify the matrix-porosity influence. First,
assuming a fine-grained homogeneous porous matrix, cal-
culations with a surrounding medium characterized by a

Fig. 8. The size evolution of the surface plasmon energy
of gold clusters within different models. Black triangles:
TDLDA results obtained with an outer vacuum “rind” at the
metal/alumina matrix interface. dm is the thickness of the
outer rind. Empty triangles: TDLDA results for free (upper
curve, dm =∞) and alumina matrix-embedded clusters (lower
curve, dm = 0). Crosses: TDLDA results with a homogeneous
surrounding matrix characterized by a constant dielectric func-
tion εm = 2. In all calculations the thickness d of the inner skin
of reduced polarizability is equal to 2 a.u. Black squares: ex-
perimental results [19]. The short horizontal line at 2.25 eV
indicates the surface plasmon energy in the large-particle limit
for fully-embedded AuN clusters. The circles correspond to ex-
perimental (black) and TDLDA (empty) results for alumina
matrix-embedded AgN clusters (model parameters: d = 2 a.u.
and dm = 4 a.u.).

low and constant refractive index, extending down to the
cluster surface R, have been performed. Results obtained
with εm = 2, a value corresponding to a decrease of the
matrix polarizability by a factor 2 in the visible spectral
range (εm ≈ 3.1), are shown in Figure 8 (crosses). Despite
the quite good numerical agreement for large clusters the
slope of the size evolution is noticeably underestimated
and the predicted porosity effects would be probably too
small for medium and small clusters. Actually the value
εm = 2, selected for illustration purpose, corresponds to a
matrix porosity much more larger. This can be assessed by
calculating the dielectric function of the porous alumina
matrix using the Bruggeman effective medium theory [53].
The experimentally-determined dielectric function of pure
alumina films elaborated under the same deposition condi-
tions as those prevailing during the composite-film prepa-
ration provides a more direct support to this assertion. A
decrease of roughly 17% with respect to crystalline Al2O3

is observed in the visible spectral range (εm ≈ 2.6). This
slight refractive index change would not modify strongly
the results corresponding to fully-embedded clusters.

In fact the quantitative failure of the theoretical pre-
dictions when fully-embedded clusters are involved is not
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Fig. 9. The evolution of the photoabsorption spectra in pres-
ence of an outer vacuum “rind” at the metal/alumina matrix
interface. dm is the thickness of the vacuum rind. Thin line
curve: fully-embedded clusters (dm = 0). Dashed line curve:
free clusters (dm =∞).

surprising. Since the changes in the electron density δρind
(Eq. (5)) induced by the oscillating external field are lo-
cated near the surface it is clear that the short-scale het-
erogeneity of the porous matrix in the vicinity of the in-
terface will play a crucial part. It is likely that at the clus-
ter/matrix interface the porosity is much more important.
The different chemical nature of the constituents and the
surface roughness probably implies the existence of defects
around the cluster. Hence a more physically-based model
would involve a local matrix dielectric function much lower
than the large-scale-averaged effective one. Model calcula-
tions involving a perfect vacuum “rind” have been carried
out (εm = 1 in the radial range R < r < R + dm). The
change in the Mie-resonance frequency for the thickness
values dm = 1 a.u., 2 a.u. and 4 a.u. is exemplified in
Figure 9. The size evolutions over the entire studied size
range are displayed in Figure 8 (black triangles). As ex-
pected the matrix porosity effects are, for a given mean
porosity, stronger within this model. One can notice that
the discrepancy with the experimental data can be rubbed
out with a vacuum-rind thickness dm much smaller than
the Fermi wavelength. Moreover the slope of the curves
are in agreement with the experimental size trend. This
holds with regard to the shape of the Mie-resonance. In ex-
periment the smaller the mean cluster-radius Rmean, the
broader and more damped the dipolar resonance. Since
the vacuum-rind around the cluster yields a blue-shift of
the Mie-resonance frequency the coupling with the inter-
band transitions is much stronger. This results in larger
broadening and damping effects (see Fig. 9). Classical cal-
culations involving the formula equation (18) with d = 2
a.u., for both free and fully-embedded clusters, illustrate
the size evolution of the Mie-resonance shape, which is
closely correlated to the blue-shift trend (see Fig. 10).
For small and medium free clusters the Mie-resonance is

Fig. 10. The size evolution of the photoabsorption cross-
section, for free and alumina matrix-embedded gold clusters,
calculated within the Mie-theory (Eq. (18)) and d = 2 a.u. The
various spectra have been independently scaled.

hardly distinguishable from the flat interband-transition
contribution. Obviously a comparison with experimental
spectra would require to take into account the previously
quoted other sources of resonance broadening. Moreover
ensemble-averaging over the entire cluster-size distribu-
tion of the composite film has to be performed.

The comparison with recent experimental data
obtained with Al2O3/AgN composite films provides ev-
idence for, on the one hand the relevance of the poros-
ity effects, and on the other hand the suitability of the
two-region dielectric model for gold and silver. The exper-
imental data for embedded AgN clusters are displayed in
Figure 8 (black circles). In the beginning of Section 3 it
was strongly emphasized that the phenomenological pa-
rameter d should be similar for silver and gold. Since the
composite films have been elaborated under the same ex-
perimental conditions, one expects that the porosity ef-
fects should be mimicked by the same parameter dm.
The results of TDLDA calculations on alumina matrix-
embedded AgN clusters, involving the values d = 2 a.u.
and dm = 4 a.u., are plotted in Figure 8 (empty circles).
The good agreement between theory and experiment, for
both silver and gold, in using the same model parame-
ters, proves the suitability of the model for investigating
the size effects in the location of the surface plasmon fre-
quency for both metals.
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4 Conclusion

In this paper the TDLDA formalism has been applied
to study the finite-size effects in the optical response of
free and matrix-embedded gold clusters. The polariza-
tion, screening and damping effects due to the core elec-
trons and the surrounding medium have been described
by means of the complex dielectric functions of the cor-
responding bulk materials. The calculations have been
carried out in the framework of the two-region dielectric
model, in which the metallic layer close to the cluster sur-
face is assumed to be less polarizable than the inner region.
The competition between the red- and blue-shift trends in-
duced by, respectively, the spillout effect and the skin re-
gion of reduced polarizability, is analyzed. The main char-
acteristics of the surface plasmon resonance, as well as the
size dependence, have been found closely linked to the en-
ergy dependence of the complex dielectric function of the
core electrons. In the case of free clusters, the size evolu-
tion of the Mie-frequency displays a net blue-shift trend
as the cluster size decreases, much stronger than in silver.
However, the blue-shift is strongly reduced in presence of
a surrounding dielectric medium extending down to the
particle surface, due to the increase of the spillout phe-
nomenon. The effect of the matrix porosity at the inter-
face, mimicked by involving a thin vacuum rind between
the metal and the embedding matrix, has been investi-
gated. The theoretical results agree quite well with recent
experimental data on alumina matrix-embedded gold par-
ticles, with respect to both the location and the damping
of the surface plasmon resonance.

Appendix A: Two-body Coulomb interaction
in presence of dielectric media; case of a single
spherical interface

The Coulomb interaction potential Vc(r1, r2) between two
elementary charges located at r1 and r2 in presence of a
sphere of radius R and dielectric constant ε1 surrounded
by an infinite medium of dielectric constant ε2 is expressed
as [42]
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where the P ′`s are the Legendre polynomials, α is the angle
between the vectors r1 and r2, r> = max(r1, r2) and r< =
min(r1, r2).

Appendix B: Two-body Coulomb interaction
in presence of dielectric media; case of two
nested spherical interfaces (radii R1 and R2,
R1 < R2)

The Coulomb interaction potential Vc(r1, r2) between two
elementary charges located at r1 and r2 in presence of a
coated dielectric sphere (dielectric constant ε1 in the ra-
dial range [0, R1], dielectric constant ε0 in the radial range
[R1, R2]) surrounded by an infinite medium of dielectric
constant ε2 is obtained by solving the Poisson equation
with the proper boundary conditions at both interfaces
(continuity of the potential and of the normal component
of the displacement vector). Six cases have to be consid-
ered depending on the values of r1 and r2 relative to the
interface radii (Vc is symmetric). The derivation of the
final expressions is rather tedious and the formulas as a
function of the parameters ε1, ε0, ε2, R1 and R2 are cum-
bersome. Hence we provide the various expressions in the
closest form, suitable for a straightforward implementa-
tion in a numerical code

∑
`

[
A`

r`+1
2

+
1

ε2

r`<

r`+1
>

]
P`[cos(α)] r1, r2 > R2

∑
`

[
B`r

`
2+

C`

r`+1
2

]
P`[cos(α)] R1 < r2 < R2 < r1∑

`

[
D`r

`
2

]
P`[cos(α)] r2 < R1 < R2 < r1

∑
`

[
E`r

`
2+

F`

r +̀1
2

+
1

ε0

r`<

r +̀1
>

]
P`[cos(α)] R1 < r1, r2 < R2∑

`

[
G`r

`
2

]
P`[cos(α)] r2 < R1 < r1 < R2

∑
`

[
H`r

`
2+

1

ε1

r`<

r`+1
>

]
P`[cos(α)] r1, r2 < R1

with

B` = −(2`+ 1)[`ε1 + (`+ 1)ε0]

(
R2

R1

)2`+1
1

∆r`+1
1

C` = `(2`+ 1)(ε1 − ε0)
R2`+1

2

∆r`+1
1

A` = C` +R2`+1
2

[
B` −

1

ε2r
`+1
1

]
D` = B` +

C`

R2`+1
1

F` =
`(ε1 − ε0)

ε0

{
(`+ 1)(ε0 − ε2)

+ [`ε0 + (`+ 1)ε2]

(
R2

r1

)2`+1}
r`1
∆

E` = −
1

ε0r
`+1
1

−
[`ε1 + (`+ 1)ε0]

R2`+1
1

F`
`(ε1 − ε0)

G` = E` +
F`

R2`+1
1

+
1

ε0r
`+1
1
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H` =

{[
(`+1)(ε2−ε0)−[`ε0+(`+1)ε2]

(
R2

R1

)2 +̀1
]

×
(2`+ 1)

∆
−

1

ε1

}
r`1

R2`+1
1

∆ = `(`+ 1)(ε2 − ε0)(ε1 − ε0)− [`ε1 + (`+ 1)ε0]

× [`ε0 + (`+ 1)ε2]

(
R2

R1

)2`+1
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